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Abstract-  Rehabilitation devices can greatly benefit from
the use of natural sensors.  Thus, we have extended on our
efforts to extract angular information from muscle afferent
nerves by means of cuff electrodes.  Is this study we applied
wavelet analysis to electroneurographic (ENG) data from
rabbits.  In order to estimate ankle flexion/extension angles, we
recorded ENG signals from the left Tibial and Peroneal nerves,
both during FES and under passive motion.  Several processing
methods were used for extraction of angular data and were
compared with the wavelet analysis.  An artificial neural
network (ANN) was used with the analyzed features to improve
on the accuracy of the angular predictions.  The network has so
far been tested for local generalization only.  The ANN was
found to work better with the wavelet features than with
previously explored rectified and bin integrated (RBIN) signals.
Best results were obtained by using ANN inputs that consisted
of both the output from a single wavelet packet node and the
RBIN signal: the mean angle prediction error was 1.2o.
Exciting as this result is, we must keep in mind that due to the
local generalization scope of this study, angle predictions have
yet to be assessed regarding inter-rabbit variability.

Keywords – Natural sensors, neural prosthesis, implanted
cuff electrodes, functional electrical stimulation, wavelets,
artificial neural networks, nerve signals.

I. INTRODUCTION

Closed-loop FES control can greatly benefit from the use
of reliable sensory information pertaining to the output
angular trajectories.  The angular information can be
obtained from sensory nerve fibers that monitor the
mechanical state of musculotendinous tissue, namely, the
muscle afferent fibers.  Thus, our research group has been
using implanted cuff electrodes to extract angular
information by analyzing electroneurographic (ENG) signals
obtained directly from the nerve bundles that carry it.  So far
[1, 2, 3] rectified and bin integrated (RBIN) ENG signals
have been monitored and have been found to allow for a
reasonable mapping onto angular data by means of neural
and fuzzy techniques.  However, in [4] it was shown that the
RBIN method is unsuited for signals with very low signal-to-
noise ratios, which is often our case.  This underlines the
need for other ENG features to be explored.

Time-frequency domain features carry crucial ENG
information.  To predict the instantaneous angle at a joint,
the static muscle length information must be separated from
the dynamic length changes.  The afferent fibers carry
frequency coded information pertaining to a muscle’s static
and dynamic length.  The information is carried by the static
and dynamic fibers within much the same frequency band.
However,  at the lower frequencies the static and dynamic
signals may be separable from each other.  This may be

done, at least in principle, by high resolution time and
frequency analysis of the muscle afferent signals.  Several
techniques are available for time-frequency analysis,
including short-time Fourier, Wigner-Ville, and Gabor
transforms [5].  Wavelets (both continuos and discrete) can
also be used for this purpose, but they have the advantage
that they allow greater selectivity within the time-frequency
domain than the other methods.  Thus, this study presents
our findings from wavelet packet analysis applied to
extraction of angular information from muscle afferent ENG.

II. METHODOLOGY

A. Experimental Setup

Acute experiments were conducted with 2 female New
Zealand rabbits. The rabbits were pre-anesthetized with an
injection of Midazolam (2.0 mg/kg; DormicumTM,
Alpharma, Norway).  Then, after 15 to 20 min, anesthesia
was initiated by an injection of HypnormTM (0.095 mg/kg
Fetanyl + 3.0 mg/kg Fluranison;  Janssen Pharmaceutica,
Belgium).  The anesthesia was maintained by applying
intramuscular injections of DormicumTM (0.15 mg/kg
Midazolam), and HypnormTM (0.03 mg/kg Fetanyl + 1.0
mg/kg Fluranison) every 20 min.  All procedures were
previously approved by the Danish Committee for the
Ethical Use of Animals in Research.  During the experiments
the rabbits were placed onto a mechanical device for fixating
the knee and ankle joints in place (see [3] for more details) .

For extracting the ENG signals, tripolar cuff electrodes
were implanted onto the Peroneal and Tibial branches of the
sciatic nerve in the left hind limb. The Tibial and Peroneal
nerves were transected just above the ankle joint to minimize
sensory inputs from the foot.  Further, to minimize cutaneous
inputs, the sural nerve was transected distal to its origin in
the Tibial nerve.  The internal diameters for the cuff
electrodes were 2 mm for the Tibial nerve and 1.8 mm for
the Peroneal nerve.  The cuff length was 22 mm in both
cases.  The cuff electrodes were manufactured according to
the procedure described in [6] but, in this case, a longitudinal
cut was made to open the cuff.

Arbitrary angular trajectories were generated both with
FES and by passively rotating the joint through the extension
and flexion ranges.  For stimulation purposes, percutaneous
stainless steel wires were placed intramuscularly into the
Tibialis anterior and lateral gastrocnemius muscles,
respectively, in the same hind limb as the cuff electrodes.  A
constant current stimulator was used with the output set at
5mA, 80Hz.
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An optical angular transducer was used for measuring the
real joint angles.

B. Signal Processing
The ENG signals were sampled at 10kHz after being

submitted to a bandpass analog filter (1st order Butterworth,
500Hz to 2kHz bandpass).  To eliminate stimulation artifacts
when FES was applied, ENG was recorded only for 8ms
before each stimulation pulse [7].

A digital FIR (N=120) filter was designed - using the
Hamming window method - and used for filtering the
sampled ENG signals with various pass-bands.  An optimal
filter configuration (among 100 tested) was chosen based on
the maximum correlation between the processed ENG and
known joint angles.  For filter selection, the angles were
correlated with the following ENG features:

• RBIN
• threshold-based RBIN (Th-RBIN) [4],
• variance,
• autocorrelation (sum of lag 0 to 2),
• 4th order cumulant (as suggested in [4]),
• maximum eigenvalue, and
• summation of different bands in the power spectrum

density domain.
These features (except the last one) were also used later for
comparison with the wavelet analysis method.

The Th-RBIN signals were derived from a threshold-
based technique [4] that required prior knowledge of the
angular data.  Thus, it is included here for reference purposes
only.  However, even though threshold-based methods are
known not to be robust if used on time-varying signals, its
use here illustrates the potential of a future automatic
adaptive technique.

The Peroneal channel is expected to have increased
activity during ankle extension, while the opposite is true for
the Tibial nerve.  Thus, to analyze the correlation of both
individual signals with both joint flexion and extension, the
angular domain was split into flexion and extension
subdomains prior to the analysis.    Further, the obtained
feature histories were submitted to an FIR smoothing filter
(N=20) prior to the analysis as well.  This is necessary as the
angular data are under 5Hz, while the extracted ENG
features may have information at 40 Hz (as a result of the
80Hz stimulation and the artifact removal technique).

B. Wavelet Packet Analysis
A five level, full wavelet packet decomposition was

made on each 8ms bin, resulting in a total of 63 nodes (Fig.
1).  Two different values were calculates for each node:

• the absolute values of the sum of the coefficients, and
• variance of the coefficients.
To determine whether the summation of two nodes could

perform better than a single node, all possible combinations
of two nodes were tested (1953 different combinations).

The following wavelets were used in the analysis:
• Haar,
• Daubechies 4 and 8,

• Symlet 4 and 10,
• biorthogonal 2.2,
• reverse biorthogonal 2.4, and
• discrete Meyer.

Fig. 1 – Full packet tree for a 5 level decomposition.  With the
exception of node 1 (preprocessed signal), odd numbered nodes
denote the output from highpass filters, while even nodes are
outputs from lowpass filters.

B. Artificial Neural Network (ANN)
An ANN was trained to predict the angle from the

features provided by the preprocessing and wavelet analysis.
The network was composed of a neutral input layer, a 10-
neuron hidden layer, and a single output neuron.  Tansig
transfer functions from –1.0 to 1.0 were used in the hidden
and output neurons.  To speed up learning, and to
accommodate for data range fluctuations, both input and
output training and test data were scaled to the (-0.8, 0.8)
range.  Training was done using the Levenberg-Marquardt
algorithm.  The amount of training was limited by setting the
maximum number of full-set iterations to 1000.  On the other
hand, the ANN was reinitialized and retrained 5 times for
each recording and for each ANN configuration.  The best
and worst results from this analysis were discarded; the three
intermediate trial results were used in the analysis.

The ANN performance was assessed only for local
generalization, that is, training and testing were performed
with different data subsets, which is always a requirement,
but the different subsets belonged to the same rabbits.  Thus,
no effort has been made yet to evaluate a network that was
trained on data from one rabbit but was tested on data from
another one (the so called cross-sectional, or global
generalization problem).

Based on preliminary tests, the input vector contained
either 0, 1, or 2 time delays depending on the ANN used.
The signals were split into alternating sequences of length
equal to d+1, where d is the number of delays.  One
sequence set was used for network training, while the
alternating one was used for network testing.  Fig. 2
illustrates the data splitting procedure.
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Fig. 2 – Illustrative data split into alternating sets for training and
testing, respectively.

Four different network inputs were tested (each with the
various delays above):

• the RBIN signal,
• the best node output (determined from the wavelet

packet analysis),
• the downsampled applied FES pulse width, and
• the Th-RBIN signal.

Combinations of the above network inputs were also tested.

III. RESULTS AND DISCUSSION

A. Non-Wavelet Features
Table I(a) shows the mean correlation coefficients

between several ENG features and the known angular
histories.  Table I(b) shows which paired comparisons (from
Table I(a)) actually yielded significantly different results.
From the tables it can be seen that overall the Th-RBIN
method is significantly better than the others.  It must be
recalled that this method required prior knowledge of the real
angles, which means that the good results with Th-RBIN
may be misleading.  Nonetheless, the results do show the
potential of the technique if adaptive threshold algorithms
are explored in the future.  For the Tibial channel, the Th-
RBIN algorithm performed significantly than all the other
features, while no difference was found among he remaining
features (including the RBIN).  For the Peroneal channel, the
worst performance was obtained with the RBIN algorithm.
This poor RBIN performance applies to combined FES-
based and passive movements.  For the isolated passive
movement case, however, the RBIN signals yielded a mean
correlation of 0.78 (0.74 for the Tibial channel; 0.82 for the
Peroneal channel), not shown on the tables.

TABLE I
CORRELATION RESULTS FOR NON-WAVELET FEATURES.
(a) MEAN CORRELATION VALUES; (b) PAIRED
SIGNIFICANT DIFERENT TEST: YES INDICATES
STATISTICALLY SIGNIFICANT DIFFERENCE IN THE MEAN
VALUES (WILCOXON TEST,  α=0.05).

(a)

Mean Tibial Peroneal
RBIN 0.67 0.68 0.66

Th-RBIN 0.76 0.73 0.78
Max. Eigenval. (Max-E) 0.70 0.69 0.71

Var 0.71 0.69 0.72
Autocorr. (AC) 0.71 0.69 0.72
4th order cumul. 0.71 0.69 0.72

(b)

Tibial AC Th-RBIN MAX-E RBIN VAR
Cumul. no Yes no no no
VAR no Yes no no
RBIN no Yes no

MAX-E no Yes
Th-RBIN Yes

Peroneal AC Th-RBIN MAX-E RBIN VAR
Cumul. no Yes no Yes Yes
VAR no Yes Yes Yes
RBIN Yes Yes Yes

MAX-E no Yes
Th-RBIN Yes

B. Wavelet Packet Analysis
A significant improvement was seen when using wavelet

decomposition (as compared to the RBIN method), but only
for the Peroneal channel.  Both sum and variance operations
applied to the Tibial channel ENG decomposition nodes
actually led to a worse performance than with RBIN (Fig. 3).
The best overall performance was obtained with the rbio2.4
wavelet.

Fig. 3 – Best case scenario: performance of wavelet packet analysis
as compared to the RBIN method.  The figure includes values only
for the wavelet tree nodes that yielded the best correlation with
angles.
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B. Wavelets Plus ANN
Table II shows the results for several neural network

input configurations.  Best results were obtained when the
ANN had as inputs both the best wavelet tree node output
and the RBIN signal (both with one delay associated with
each datum).  The results for this case are very good: 1.2o

mean prediction error and 0.94 correlation between the
network’s output and the known angles.  However, we must
remember that these results may apply only to the local
generalization situation studied here.  Worse results are to be
expected in a future global (cross-sectional) generalization
study.

TABLE II
MEAN ANN ANGLE PREDICTION PERFORMANCE
(PARENTHESES CONTAIN STANDARD DEVIATION
VALUES).  REPORTED VALUES ARE FOR THE TEST SETS.
WN: WAVELET DECOMPOSITION NODE OUTPUT.  FESPW:
APPLIED FES PULSE WIDTH.

Network Input Delays Mean Error
(degrees)

Mean
Correlation

% of Errors
< 1o

WN 0 2.3 (2.4) 0.81 (0.13) 58.
FESPW 0 2.3 (2.9) 0.79 (0.17) 59.
RBIN 0 2.4 (2.5) 0.73 (0.17) 50.

Th-RBIN 0 2.2 (2.4) 0.78 (0.17) 54.
WN + FESPW 0 1.6 (2.0) 0.88 (0.10) 69.
WN + RBIN 0 1.8 (2.1) 0.87 (0.11) 63.

WN 1 1.9 (2.1) 0.88 (0.10) 62.
WN + FESPW 1 1.9 (2.4) 0.82 (0.18) 69.
WN + RBIN 1 1.2 (1.3) 0.94 (0.05) 72.

WN 3 2.6 (3.3) 0.76 (0.21) 60.
WN+FES 3 3.1 (3.8) 0.70 (0.24) 57.

Th-RBIN + WN
+ FESPW

0 1.2 (1.6) 0.92 (0.08) 74.

IV. CONCLUSIONS

This study has shown that features from wavelet
decomposition can provide better inputs to an ANN than the
RBIN method.  Further, using the best output from a wavelet
packet node in addition to the RBIN signal (plus one input
delay per feature) led to a mean prediction error of 1.2o, and
a correlation of 0.94 between the predicted and measured
angles.  However, as exciting as this result seems to be, it
may only apply to the local generalization study presented
here.  Rabbit to rabbit prediction variability is an issue that
has yet to be considered in connection with the wavelet and
neural network approach.
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